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ABSTRACT
Many agronomic models require the input of daily climatic data.

Simulated climatic data may be used when long series of historic data
are not available or convenient, or when future data are needed. A
stochastic weather simulation model was developed and validated for
a ~;de range of climates. The model produces possible daily sequences
of precipitation amount, maximum and minimum air temperature,
and total solar radiation at the earth's surface for the entire year.

A first-order, two-stat~ Markov chain is used to simulate the oc-
currence of wet and dry days. Probabilities are used to simulate the
occurrence of trace precipitation amounts on wet days. A two-pa·
rameter gamma distribution conditioned by the precipitation status
on the previous day is used to generate greater than trace amounts.
Two bivariate normal distributions conditioned by the precipitation
status on the current day are used to simulate current temperature
de"iations from long.term average temperature curves. A two-pa-
rameter gamma distribution simulates current solar radiation devia-
tions from the calculated maximum clear day radiation on dry days.
On wet days, the deviations are simulated with a two-parameter beta
distribution.The model was developed with data from Columbia, Mo. Model
validation was done for Columbia, Albuquerque, N.M., Caribou,
Maine, Medford, Ore., and Miami, Fla. Various statistical tests were
done to detect significant differences in central tendency, dispersion,
and distribution. Comparisons were made to the base period used
for parameter estimation (ranged from 16 to 20 years) and also to
the SO-lear period of record available at Columbia. The validation
showed that the model produced climatic data which genera"y did
not differ significantly from the base period at any of the locations .
At Columbia, it was determined that the 17-year base period was not
long enough to adequately represent the SO years of precipitation

data.
Additional index words: Markov chain, Probability distribution,

Precipitation, Temperature, Solar radiation.

THERE have been several recent efforts to stochas-
tically simulate possible sequences of daily pre-

cipitation occurrence and amount, maximum and min-
imum air temperature, and total solar radiation received
at the earth's surface (5, 12, 13). While the goal of
the presently proposed model is the same, it is be-
lieved that the methodology differs enough to warrant
separate consideration. This study is an expansion of
earlier work by Bond (4) in which precipitation and
maximum and minimum temperature were simulated
for the May through August growing season. The
methodology has been refined somewhat for these
variables, solar radiation has been added, and the
entire model has been expanded to be appropriate for
the full year.

Simulated daily weather variates can be used in a
variety of settings to replace long series of historic
data which may not be available, convenient or ap-
propriate. Simulated data can be used in hydrologic
models for watershed planning, evaluation, and design
purposes (12). Simulated data can be used in various
types of agricultural management models to assess the
risk associated with different alternatives (5). In a
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realtime mode, possible future sequences of data can
be used in plant simulation models to make yield fore-
casts (1). The proposed weather simulation model has
been used to estimate probabilities associated with
segments of plant model response curves to better
judge which input variables realistically produce the
greatest change in model output (9).

How closely a stochastic weather simulation model
needs to represent the real system depends on the
application. While the model can become quite com-
plex, clearly there has to be a balance between com-
plexity and the foreseen uses, or effort may be largely
wasted or, at best, simply academic. In view of this,
the proposed model is intended to rroduce simulated
data which are statistically comparable to data from
the real system in measures of central tendency, dis-
persion, and distribution while preserving major in-
terrelationships among the variables. The model is
also intended to be applicable to a wide range of lo-
cations at any time of the year. A rather extensive
model validation was done to assess these claims.

The primary purpose of this paper is to present the
methods used in the model and a brief set of results
to demonstrate the performance. Much of the discus-
sion related to why certain methods were used and
complete results of the validation have been omitted
for sake of brevity. This information and some sug-
gestions for possible refinement of the model are avail-
able on request in an internal staff report (0). The
software to run the model is also available.

MATERIALS AND METHODS
Data Base

The data base for model development came from Colum-
bia, Mo. This data consisted of 80 years (1890-1969) of
precipitation and temperature values, and 22 years (July
1952-June 1974) of daily solar radiation values. Parameter
estimates came from the 17-year period (1953-1969) in which
all climatic variables were available. Data for model vali-
dation were also obtained for four other locations repre-
senting a wide range of latitude, altitude, and precipitation
pattern. Twenty years of daily climatic data (1951-1970)
were obtained for Albuquerque, N.M., Caribou, Maine,
Medford, Ore., and Miami, Fla. Together, the five sites
range in latitude from 26° at Miami to 47° at Caribou. Al-
titudes go from 5 m at Miami to 1620 rn at Albuquerque.
Average annual precipitation amounts range from less than
20 em at Albuquerque to about 150 cm at Miami.

Parameter estimates for the additional four sites were
made from the entire 20 years of available data at Medford .
However, due to missing daily solar radiation values in
excess of 20% for some years. the base period of Albu-
querque was 19 years, for Caribou, 16 years, and for Miami.
18 years. Since missing solar radiation observations were
not likely to be distributed randomly, entire years were left
out of the parameter estimation to avoid the possibility of

introducing bias.

Precipitation Occurrence
A first-order Markov chain was used to simulate the nc-

currence of precipitation. A first-order Markov chain has
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where Xi = precipitation amount on day i
n = number of days in the month

This formula for IX is appropriate only for 0 < Q' <: I.
Parameter estimates were made for each month conditioned
~m the previous day precipitation status. This conditioning
IS probably preferrable unless the number of observations
available for parameter estimation is reduced to the point
that precision has to be sacrificed.

Precipitation amounts were simulated by obtaining gamma
random variiltes using the method of Johnk (3). This method
uses a rather complicated combination of standard uniform
random variates to obtain a random variate appearing to
come from a gamma distribution with the desired parame-
ters. Simulated precipitation amounts were rounded to the
nearest 0.01 inch. Amounts which were simulated to be
smaller than 0.005 inch were not rounded to Zero but rather
were discarded and another random amount simulated. This
procedure was used because zero amounts (i.e., dry) and
trace amounts (arbitrarily set equal to 0.001 inch) were pre-
viously determined.

where T = daily mean maximum or minimum
temperature

JDA TE = julian date.

The three parameters A, B, and C were estimated by the
non-linear least squares Marquardt method as contained in
the Statistical Analysis System computer package (2). The
parameter A controls the shift in the horizontal time axis,
B establishes the amplitude of the sine curve, and C controls
the shift in the vertical temperature axis. Fits using this
three-parameter sine function were very good at all locations
(RZ values in excess of 0.93).

Daily temperatures Were generated using one bivariate
normal to simulate either current maximum or current min-
imum temperature from previous day maximum tempera-
ture. Which Current temperature was simulated depended
on the higher of the two correlations (i.e., the serial cor-
relation between previous <lnd current maximum tempera-
ture and the lag cross-correlation between previous maxi-
mum and current minimum temperature). The second bivariate
normal was used to simulate the remaining CUn-ent tem-
perature from the current temperature generated by the first
bivariate normal. This procedure takes advantage of the
highest cOITcJations. It is nott"d that in Columbia, Mo., the

:/,
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( .f x/n )
= log. ~I_~_'--(D Xi)""

A (8.898919 + 9.059950Y + 0.9775373Yz)n = _
Y(l7.79728 + II.968477Y + yz)

Y - I (arithmetic mean)- og•.
gcometnc mean

then,

Temperature
Two bivariate normal distributions were used to simulate

daily maximum and minimum temperature differences con-
ditioned on the current day precipitation status. The tem-
perature differences were obtained by subtracting the ob-
served daily temperature from two fitted three-parameter
sine Curves representing the mean daily maximum and min-
imum temperatures. The sine functions are of the form

T = SIN((JDATE - A) * 0.017214) * B + C

LARSEN & PENSE: STOCHASTIC SIMULATION OF CLIMATE

been used satisfactorily in a number of studies [e.g. see (12)
or (13) for a list of references]. In the earlier wor~ by Bond,
(4) It Was shown that the first-order was appropnate for the
months June, July and August but not for May in Columbia,
Mo. Bruhn et al. (5) showed that the first-order was appro-
priate for May, June, July, and September but not for Augustin Geneva, N.Y.

Two states were used in the Markov chain-wet and dry.
A Wet day is defined to OCCurwhenever a trace or larger
amount of precipitation is recorded. Dry days are days
which are not wet. The decision to include trace amounts
in the wet category arose primarily from solar radiation
simulation considerations.

The assumption underlying the first-order Markov chain
is that the probability that the current day is in a particular
state (i.e., wet or dry) depends only on the state of the
previous day. It has been further assumed that these so-
called transition probabilities are independent of the partic-
ular day within individual months. The monthly dry day
transition probabilities were estimated by counting the num-
ber of dry days preceded by a dry day and the number of
dry days preceded by a wet day over the base period of
record and dividing by the total number of dry previous
days and wet previous days, respectively. The correspond-
ing transition probabilities for wet days can be obtained by
subtracting the dry day transition probabilities from one.

The wet state was subdivided into occurrences of trace
and greater than trace precipitation amounts. The proba-
bility that a trace amount Occurs on a Wet day was computedby month.

Precipitation Occurrence is simulated for each day by
obtaining a random uniform number between zero and one,
inclusive. If the random number exceec, the transition prob-
ability of a dry day, then the current day is wet, otherwise
it is dry. If the current day is wet, another random uniform
number is obtained. If the second random number is smaller
than the probability of a trace Occurrence, then a trace
occurs, otherwise, an amount greater than a trace occurs.

Precipitation Amount
A two-parameter gamma distribution was used to simulate

precipitation amounts greater than a trace on wet days. This
distribution has been widely used in the past [e.g. (5) and
(8)]. The general form of the gamma probability density
function has a third parameter, y, which establishes the
lower bound for the random variable X. For precipitation
amount We assume y = 0 which, indeed, is reasonable since
amounts will approach zero but will not be equal to or less
than Zero. Setting y = 0 leaves two parameters, a and {3,
to be estimated. The gamma distribution has two quite dif-
ferent shapes depending on whether a is less than one or
greater than or equal to one. In the first case, the distribution
has a reverse "J" shape in the first quadrant where the
Curve goes asymptotic to both the x and y axes. The second
case results in a curve in the first quadrant starting near the
origin and then resembling a normal Curve with a positive
(right) skew eventually going asymptotic to the x-axis. The
two-parameter gamma with 0 < a < 1 is the appropriate
distribution for precipitation amounts since this gives rel-
atively high probability to small rainfall amounts and in-
creasingly less probability to larger amounts.

Maximum likelihood (II) estimates are not available when
Q' is less than one and are quite unstable when Q' is between
One and 2.5. Method of moments (II) estimators are even
less precise than maximum likelihood and especially so for
values of a less than, say, 40. An approximate maximum
likelihood parameter estimation procedure suggested by
Greenwood and Durand (6) was chosen. The error of this
procedure for Q' < I is stated by Johnson and Kotz [(7),
Vol. I, p. 189] to not exceed 0.0054%. Using the Greenwood
and Durand method, define
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correlation between previous maximum and current mini-
mum was almost always larger on dry days and sometimes
larger on wet days than the correlation between previous
maximum and current maximum. Three means, three var-
iances, and three correlations were estimated for each month
and precipitation status. These parameters were estimated
from the temperature differences using the usual formulae .
After parameter estimates were made, daily temperature
differences were stimulated using the following general
equation:

1'2 = il2 + PI2 0-2 (1'. - ill)/o-. + 0-2 (l - p2.;)lrzZ

where 1'1 = difference for either previous day maximum
temperature or current temperature

1'2 = current temperature
Z = standard normal random variate.

The simulated temperatures were obtained by adding the
appropriate daily values from the fitted sine functions to the
values obtained for 1'2'

The temperature simulation methodology just described
assumes that temperature difference parameter estimates
are homogeneous within month and precipitation status.
This assumption is thought to be much more conservative
than the assumption that parameter estimates based on ac-
tl/a[ temperatures are homogeneous within month and pre-
cipitation status. The latter assumption is clearly subject to
criticism during the spring and fall months when seasonal
weather changes are relatively fast.

Solar Radiation
Daily solar radiation differences were simulated from a

gamma distribution on dry days and a beta distribution on
wet days. The solar radiation differences were obtained by
subtracting the observed solar radiation value from the
maximum clear day radiation. The latter values were com-
puted from a series of equations which depend only on the
latitude and julian date. The equations were obtained from
unpublished material with permission from J. T. Ritchie (soil
scientist; USDA-ARS; Grassland, Soil and Water Research
Laboratory; Temple, Tex.).

Before parameters were estimated for the gamma distri-
bution, a transformation was made to the dry day solar
radiation differences. The actual dry day solar radiation
values are negatively skewed and, hence, the differences
are positively skewed. This fits the general shape of a gamma
distribution with a ~ I. Referring back to the general three-
parameter gamma distribution discussed in the precipitation
amount section, recall that the third parameter, y, estab-
lishes the lower bound. While y could realistically be as-
sumed to be zero for precipitation, this is generally not a
good assumption for solar radiation. Although maximum
likelihood estimators exist for all three gamma parameters,
the estimates are unstable when a is less than 2.5. Aside
from maximum likelihood estimation, a good first approx-
imation for y is a number slightly less than the observed
minimum [(7), Vol. I, p. 187]. Rather than explicitly estimate
y. the solar radiation differences were transformed by the
following equation.

TSRDc; = SRD - MINSRD + 3

where SRD = solar radiation difference
MINSRD = minimum solar radiation difference within

month and precipitation status
TSRDG = transformed solar radiation difference

Since the transformed solar radiation difference values start
at a minimum of three for all months, y can be assumed to
be zero. The addition of three arose from programming
considerations to avoid the possibility of roundoff created

zero values: The ex and {3parameters were again estimated
using the Greenwood and Durand method. This choice was
made because of the limitation in the maximum likelihood
estimator for a values less than 2.5. For Columbia, Mo.,
Ot generally ranged between 2 and 4. The formula for esti-
mating ex by the Greenwood and Durand method follows.

• (0.5000876 + 0.1648852Y - 0.0544274y2)ex=----------------Y

h Y - 1 (arithmetic mean)were - oge .
geometnc mean

This formula for Ot is appropriate for a ~ I. Johnson and
Kotz [(7), Vol. I, p. 189] state that the error of this ap-
proximation does not exceed 0.0088%. The {3parameter was
estimated as before.

The beta distribution was hypothesized for wet day solar
radiation differences. The standard form of the beta distri-
bution has two paramekrs, p and q, and requires the random
variable X to be in the interval zero to one, inclusive.

To get the solar radiation differences on the interval [0, I],
the following transformation was made:

SRD - MINSRD
TSRDB = MAXSRD - MINSRD

where SRD = solar radiation difference
MINSRD = minimum SRD within month and

precipitation status
MAXSRD = maximum SRD within month and

precipitation status
TSRDB = transformed SRD.

Formulas for estimating p and q were obtained using the
method of moments (11) and are as follows:

• w - v(l + wfP = -----
v(I + W)3

q = pw
where v sample variance

w (I - xl/x
x sample mean.

After all parameter estimates were made, the appropriate
transformed solar radiation differences were simulated by
month and precipitation status. In the case of dry days,
gamma random variates were simulated using the same pro-
cedure as for precipitation. Each random variate was then
transformed back to the original scale by adding MINSRD,
subtracting 3. and adding the maximum clear day radiation.
In the case of wet days, beta random variates were simulated
by taking advantage of the following relationship:

[(p,1)
(3(p,q) = f(p,l) + [(q,lf

Thus. a beta random variate was obtained from a combi-
nation of two gamma random variates. Daily solar radiation
values were then computed in the original scale by reversing
the transformations previously indicated.

RESULTS AND DISCUSSION

Extensive model testing was done at Columbia,
Mo., because of the availability of a long historic rec-
ord for precipitation and temperature. Simulated data
were compared to the 17-year historic base period and
to the entire 80-year length of record. The former tests
indicate whether model assumptions are valid and the
latter tests show whether the base period is of suffi-
cient length to adequately represent the entire data
set.
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zero values; The a and {j parameters were again estimated
using the Greenwood and Durand method. This choice was
made because of the limitation in the maximum likelihood
estimator for a values less than 2.5. For Columbia, Mo.,
a generally ranged between 2 and 4. The formula for esti-
mating a by the Greenwood and Durand method follows.

A (0.5000876 + 0.1648852Y - 0.0544274y2)
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geometnc mean

Th;, formula for a is appropriate for a ? 1. Johnson and
Katz [(7), Vol. I, p. 189] state that the error of this ap-
proximation does not exceed 0.0088%. The {j parameter was
estimated as before.

The beta distribution was hypothesized for wet day wlar
radiation differences. The standard form of the beta distri-
bution has two parameters, p and q, and requires the random
variable X to be in the interval zero to one, inclusive.

To get the solar radiation differences on the interval [0, I],
the following transformation was made:

SRD - MINSRD
TSRDu = MAXSRD _ MINSRD

where SRD = solar radiation difference
MINSRD = minimum SRD within month and

precipitation status
MAXSRD = maximum SRD within month and

precipitation status
TSRDB = transformed SRD.

Formulas for estimating p and q were obtained using the
method of moments (II) and are as follows:

A w - v(l + W)2

p = v(l + W)3

q = pw
where v sample variance

w (I - x)/x
x sample mean.

After all parameter estimates were made, the appropriate
transformed solar radiation differences were simulated by
month and precipitation status. In the case of dry days,
gamma random variates were simulated using the same pro-
cedure as for precipitation. Each random variate was then
transformed back to the original scale by adding MINSRD,
subtracting 3, and adding the maximum clear day radiation.
In the case of wet days, beta random variates were simulated
by taking advantage of the following relationship:

f(p,1)
(j(p,q) = np,1) + nq,l)'

Thus a beta random variate was obtained from a combi-
natio~ of two gamma random variates. Daily solar radiation
values were then computed in the original scale by reversing
the transformations previously indicated.

RESUL 1'5 AND DISCUSSION
Extensive model testing was done at Columbia,

Mo., because of the availability of a long historic rec-
ord for precipitation and temperature. Simulated data
were compared to the 17-year historic base period and
to the entire 80-year length of record. The former tests
indicate whether model assumptions are valid and the
latter tests show whether the base period is of suffi-
cient length to adequately represent the entire data
set.
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Annual--•.•• Significant at the 0.05 and 0.01 levels, respectively.

Columbia
(17'year period)

SimHist
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Model validation ;It Columbia consisted of several
typL'S of tests. T-tests were lIsed to compare the
means, and F-tests were llsed to compare the vari-
ances of mean daily precipitation, maximum temper-
ature, minimum temperature, and solar radiation for
each month and precipitation status (wet or dry). The
ranges of these weather variables were also examined.
Chi-square tests were used to compare the frequency
of wet days for each month. Two-sample Kolmogorov-
Smirnov (K-S) tests were used to compare cumulative
distribution functions (CDF's) by month and precip-
itation status. The means, standard deviations, and
ranges of W~i spells, dry spells, freezing spells, and
hot spells (35 C or above) were computed for each
month for the 80 years of historic data and 99 years
of simulated data. Finally, the frequency distributions
of the wet, dry, freezing, and hot spells as well as the
CDF's which were declared significantly different by
the K-S tests were graphed for the historic and sim-ulated data.

At the other four locations, comparisons were made
using 50 years of simulated data and the entire 20-
year historic period. Tests were made for frequency
of wet days and means, variances, and CDF's for each
climatic variable by month and precipitation status.
Ranges were also examined.

Table 1 shows a comparison between the historic
and simulated data at each location for frequency of
wet days, mean total precipitation, maximum and
minimum temperature, and solar radiation by month
and annually. Because of space limitations, other re-
sults are not presented here but may be obtained fromthe authors (10).

The validation showed that the method used to sim-
ulate precipitation OCcurrence worked very well for
the base period at all locations. No significant differ-
ences were found (a = 0.05). At Columbia where 80
years of precipitation and temperature data were avail-
able, the simulated precipitation frequencies (based
on the most recent 17-year period) did not compare
well to the long term averages for 5 of the 12 months.

The simulated precipitation amounts compared fa-
vorably to the base period for all locations. No sig-
nificant differences were found in the means and very
few were found in the distributions (a = 0.05). A
majority of the variances were significantly different
at four of the five locations (Q = 0.05). The annual
totals showed a slight positive bias and the associated
variances a slight negative bias. Comparison of the
simulated data to the entire 80-year period of record
at Columbia revealed a negative bias in the average
monthly rainfall amounts and variances. The simu-
lated total annual rainfall was significantly lower thanthe historic.

The algorithm used to generate daily maximum and
minimum temperatures worked very well. Few sig-
nificant differences were found in the means, vari-
ances, and distributions (a = 0.05). Comparisons to
the base period showed a tendency for the monthly
means to be low On wet days. The average annual
maximum temperatures showed a slight negative bias.
The simulated data compared satisfactorily to the 80-
year period at Columbia although there was some in-
dication that the J7-year base was slightly warmer.
The variances for the average annual maximum tem-
perature were significantly ditTerent. .

TIJC method llsed to simulate solar radiation worked
extremely well. Very few significant differences were
found in the means and distributions (a = 0.05). Vari-
ances were significantly ditTerent less than 25% of the
time (Q = 0.05). No biases were evident in any of the
comparisons. There was not a long enough period of
record available at Columbia to determine whether
the J7-year base period was of sufficient length.

Overall, the validation showed that the simulated
values for all climatic variables were very similar to
the actual data used for parameter estimation at all
locations tested. However, the analysis also indicated
that J7 years were not enough to adequately represent
the 80 years of recorded precipitation data at Colum-
bia. If adequate representation is desired, a longer
base period for parameter estimation would be re-
quired. However, many times it is better for the sim-
ulated data to represent recent history rather than a
long time period. This is particularly true if the sim-
ulated data are used to assess the risk of current de-
cisions or represent future weather. It may also be
possible that the simulator may function satisfactorily
with only a 10 to IS-year base period for temperature
and solar radiation. However, too short of a base
would cause the simulated data to have unrealistically
low variance. The choice of the length of the base
period depends in part on the purpose of the simulation.
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