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Stochastic Simulation of Daily Climatic Data for Agronomic Models'

G. A. Larsen’ and R. B. Pense®

ABSTRACT

Many agronomic models require the input of daily climatic data.
Simulated climatic data may be used when long series of historic data
are not available or convenient, or when future data are needed. A
stochastic weather simulation model was developed and validated for
a wide range of climates. The model produces possible daily sequences
of precipitation amount, maximum and minimum air temperature,
and total solar radiation at the earth’s surface for the entire year.

A first-order, two-state Markov chain is used to simulate the oc-
currence of wei and dry days. Probabilities are used to simulate the
occurrence of trace precipitation amounts on wet days. A two-pa-
rameter gamma distribution conditioned by the precipitation status
on the previous day is used to generate greater than trace amounts.
Two bivariate normal distributions conditioned by the precipitation
status on the current day are used to simulate current temperature
deviations from long-term average temperature curves. A two-pa-
rameter gamma distribution simulates current solar radiation devia-
tions from the calculated maximum clear day radiation on dry days.
On wet days, the deviations are simulated with 2 two-parameter beta
distribution. :

The model was developed with data from Columbia, Mo. Model
validation was done for Columbia, Albuguerque, N.M., Caribou,
Maine, Medford, Ore., and Miami, Fla. Various statistical tests were
done to detect significant differences in central tendency, dispersion,
and distribution. Comparisons were made to the base period used
for parameter estimation (ranged from 16 to 20 years) and also to
the 80-year period of record available at Columbia. The validation
showed that the model produced climatic data which generally did
not differ significantly from the base period at any of the focations.
At Columbia, it was determined that the 17-year base period was not
long enough to adequately represent the 80 years of precipitation
data.

Additional index words: Markov chain, Probability distribution,
Precipitation, Temperature, Solar radiation.

THERE have been several recent efforts to stochas-
tically simulate possible sequences of daily pre-
cipitation occurrence and amount, maximum and min-
imum air temperature, and total solar radiation received
at the earth’s surface 5, 12, 13). While the goal of
the presently proposed model is the same, it is be-
lieved that the methodology differs enough to warrant
separate consideration. This study is an expansion of
earlier work by Bond (4) in which precipitation and
maximum and minimum temperature were simulated
for the May through August growing $eason. The
methodology has becn refined somewhat for these
variables, solar radiation has been added, and the
entire model! has been expanded to be appropriate for
the full year.

Simulated daily weather variates can be used in a
variety of settings to replace long series of historic
data which may not be available, convenient or ap-
propriate. Simulated data can be used in hydrologic
models for watershed planning, evaluation, and design
purposes (12). Simulated data can be used in various
types of agricultural management models to assess the
risk associated with different alternatives 5). Ina
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realtime mode, possible future sequences of data can
be used in plant simulation models to make yield fore-
casts (1). The proposed weather simulation model has
been used to estimate probabilities associated with
segments of plant model response curves to better
judge which input variables realistically produce the
greatest change in model output (9).

How closely a stochastic weather simulation model
needs to represent the real system depends on the
application. While the model can become quite com-
plex, clearly there has to be a balance between com-
plexity and the foreseen uses, or effort may be largely
wasted or, at best, simply academic. In view of this,
the proposed model is intended to produce simulated
data which are statistically comparable to data from
the real system in measures of central tendency, dis-
persion, and distribution while preserving major in-
terrelationships among the variables. The model is
also intended to be applicable to a wide range of lo-
cations at any time of the year. A rather extensive
model validation was done to assess these claims.

The primary purpose of this paper is to present the
methods used in the model and a brief set of results
to demonstrate the performance. Much of the discus-
sion related to why certain methods were used and
complete results of the validation have been omitted
for sake of brevity. This information and some sug-
gestions for possible refinement of the model are avail-
able on request in an internal staff report (10). The
software to run the model is also available.

MATERIALS AND METHODS
Data Base

The data base for model development came from Colum-
bia, Mo. This data consisted of 80 years (1890-1969) of
precipitation and temperature values, and 22 years (July
1952-June 1974) of daily solar radiation values. Parameter
estimates came from the 17-year period (1953-1969) in which
all climatic variables were available. Data for model vali-
dation were also obtained for four other locations repre-
senting a wide range of latitude, altitude, and precipitation
pattern. Twenty years of daily climatic data (1951-1970)
were obtained for Albuquerque, N.M., Caribou, Maine,
Medford, Ore., and Miami, Fla. Together, the five sites
range in latitude from 26° at Miami to 47° at Caribou. Al-
titudes go from 5 m at Miami to 1620 m at Albuquerque.
Average annual precipitation amounts range from less than
20 cm at Albuquerque to about 150 cm at Miami.

Parameter estimates for the additional four sites were
made from the entire 20 years of available data at Medford.
However, due to missing daily solar radiation values in
excess of 20% for some years, the base period of Albu-
querque was 19 years, for Caribou, 16 years, and for Miami,
18 years. Since missing solar radiation observations were
not likely to be distributed randomly, entire years were left
out of the parameter estimation to avoid the possibility of
introducing bias.

Precipitation Occurrence

A first-order Markov chain was used to simulate the oc-
currence of precipitation. A first-order Markov chain has
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been used satisfactorily in number of studies [e.g. see (12)
or (13) for a list of references]. In the earlier work by Bond,
(4) it was shown that the first-order was appropriate for the
months June, July and August but not for May in Columbia,
Mo. Bruhn et al. (5) showed that the first-order was appro-
priate for May, June, July, and September but not for August
in Geneva, N.Y.

Two states were used in the Markov chain—wet ang dry.
A wet day is defined 1o occur whenever a trace or larger
amount of precipitation js recorded. Dry days are days
which are not wet. The decision to include trace amounts
in the wet category arose primarily from solar radiation
simulation considerations.

The assumption underlying the first-order Markov chain
is that the probability that the current day is in a particular
state (i.e., wet or dry) depends only on the state of the

ing transition probabilities for wet days can be obtained by
subtracting the dry day transition probabilities from one.

The wet state was subdivided into occurrences of trace
and greater than trace precipitation amounts, The proba-
bility that a trace amount occurs on a wet day was computed
by month.

Precipitation occurrence is simulated for each day by
obtaining a random uniform number between zero and one,
inclusive. If the random number excee - the transition prob-

A two-parameter gamma distribution was used to simulate
precipitation amounts greater than a trace on wet days. This
distribution has been widely used in the past [e.g. (5) and
(®)]. The general form of the gamma probability density
function has a third parameter, y, which establishes the
lower bound for the random variable X. For precipitation
amount we assume y = ( which, indeed, is reasonable since
amounts will approach zero but wili not be equal to or less
than zero. Setting y = 0 leaves two parameters, a and g,

greater than or equal to one, In the first case, the distribution
has a reverse *J shape in the first quadrant where the
curve goes asymptotic to both the x and y axes. The second
case results in a curve in the first quadrant starting near the
origin and then resembling a normal curve with a positive

Creasingly less probability to larger amounts.

Maximum likelihood (11) estimates are not available when
@ Is less than one and are quite unstable when « is between
one and 2.5, Method of moments (11) estimators are even
less precise than maximum likelihood and especially so for
values of « less than, say, 40. An approximate maximum
likelihood parameter estimation procedure suggested by
Greenwood and Durand (6) was chosen. The error of this
Procedure for o < | jg stated by Johnson and Kotz [,
Vol. I, p. 189] to not exceed 0.0054%. Using the Greenwood
and Durangd method, define
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where x; = precipitation amount on day i
1 = number of days in the month

This formula for a is appropriate only for ¢ < a < [,
Parameter cstimates were made for each month conditioned
on the previous day precipitation status. This conditioning
is probably preferrable unless the number of observations
available for parameter estimation is reduced to the point
that precision has to be sacrificed.

Precipitation amounts were simulated by obtaining gamma
random variates using the method of Johnk (3). This method
uses a rather complicated combination of standard uniform
random variates to obtain a random variate appearing to
come from a gamma distribution with the desired parame-
ters. Simulated precipitation amounts were rounded to the
nearest 0.01 inch. Amounts which were simulated to be
smaller than 0.005 inch were not rounded to zero but rather
were discarded and another random amount simulated. This
procedure was used because Ze€ro amounts (i.e., dry) and
trace amounts (arbitrarily set equal to 0.001 inch) were pre-
viously determined.

Temperature
daily maximum and minimum temperature differences con-

ditioned on the current day precipitation status. The tem-

imum temperatures, The sine functions are of the form
T = SIN(JDATE - A)*0.017214) *B + C

1l

where T = daily mean maximum or minimum
temperature
JDATE = julian date.

The three parameters A, B, and C were estimated by the
non-linear least squares Marquardt method as contained in
the Statistical Analysis System _computer.package' (2). The

the shift in the vertical temperature axis. Fits using this
three-parameter sine function were very good at all locations
(R values in excess of 0.93).

Daily temperatures were generated using one bivariate
normal to simulate ejther current maximum or current min-
imum lemperature from previous day maximum tempera-
ture. Which current temperature was simulated depended
on the higher of the two correlations (i.e., the serial cor-
relation between previous and current maximum tempera-
ture and the lag cross-correlation between previous maxi-
mum and current minimum temperature). The second bivariate
normal was used to simulate the remaining current tem-
perature from the current lemperature generated by the first
bivariate normal. This procedure takes advantage of the
highest correlations, It is noted that in Columbia, Mo., the
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correlation between previous maximum and current mini-
mum was almost always larger on dry days and sometimes
larger on wet days than the correlation between previous
maximum and current maximum. Three means, three var-
iances, and three correlations were estimated for each month
and precipitation status. These parameters were estimated
from the temperature differences using the usual formulae.
After parameter estimates were made, daily temperature
differences were stimulated using the following general
equation:

Ty = iy + pe 62 (Ty — u)oy + 6, (1 — p7)""Z

where T, = difference for either previous day maximum

temperature or current temperature
current temperature :

standard normal random variate.

T,
Z

The simulated temperatures were obtained by adding the
appropriate daily values from the fitted sine functions to the
values obtained for T,.

The temperature simulation methodology just described
assumes that temperature difference parameter estimates
are homogeneous within month and precipitation status.
This assumption is thought to be much more conservative
than the assumption that parameter estimates based on ac-
tual temperatures are homogeneous within month and pre-
cipitation status. The latter assumption is clearly subject to
criticism during the spring and fall months when seasonal
weather changes are relatively fast.

i

Solar Radiation

Daily solar radiation differences were simulated from a
gamma distribution on dry days and a beta distribution on
wet days. The solar radiation differences were obtained by
subtracting the observed solar radiation value from the
maximum clear day radiation. The latter values were com-
puted from a series of equations which depend only on the
latitude and julian date. The equations were obtained from
unpublished material with permission from J. T, Ritchie (soil
scientist; USDA-ARS; Grassland, Soil and Water Research
Laboratory; Temple, Tex.).

Before parameters were estimated for the gamma distri-
bution, a transformation was made to the dry day solar
radiation differences. The actual dry day solar radiation
values are negatively skewed and, hence, the differences
are positively skewed. This fits the general shape of a gamma
distribution with « = 1. Referring back to the general three-
parameter gamma distribution discussed in the precipitation
amount section, recall that the third parameter, y, estab-
lishes the lower bound. While y could realistically be as-
sumed to be zero for precipitation, this is generally not a
good assumption for solar radiation. Although maximum
likelihood estimators exist for all three gamma parameters,
the estimates are unstable when « is less than 2.5. Aside
from maximum likelithood estimation, a good first approx-
imation for vy is a number slightly less than the observed
minimum [(7), Vol. |, p. 187]. Rather than explicitly estimate
v, the solar radiation differences were transformed by the
following equation.

TSRDg = SRD - MINSRD + 3

where SRD = solar radiation difference
MINSRD = minimum solar radiation difference within
month and precipitation status
TSRD; = transformed solar radiation difference

Since the transformed solar radiation difference values start
at a minimum of three for all months, y can be assumed to
be zero. The addition of three arose from programming
considerations to avoid the possibility of roundoff created

zero values! The o and 8 parameters were again estimated
using the Greenwood and Durand method. This choice was
made because of the limitation in the maximum likelihood
estimator for a values less than 2.5. For Columbia, Mo.,
& generally ranged between 2 and 4. The formula for esti-
mating o by the Greenwood and Durand method follows.

& = (0.5000876 + 0.1648852Y — 0.0544274Y?)
Y
arithmetic mean
m)

where Y = log, (

This formula for & is appropriate for « = 1. Johnson and
Kotz [(7), Vol. 1, p. 189] state that the error of this ap-
proximation does not exceed 0.0088%. The 8 parameter was
estimated as before.

The beta distribution was hypothesized for wet day solar
radiation differences. The standard form of the beta distri-
bution has two parameters, p and q, and requires the random
variable X to be in the interval zero to one, inclusive.

To get the solar radiation differences on the interval [0, 1],
the following transformation was made:

SRD -- MINSRD

TSRDs = S72XSRD — MINSRD

where SRD = solar radiation difference
MINSRD = minimum SRD within month and
precipitation status
MAXSRD = maximum SRD within month and
precipitation status
TSRD;g = transformed SRD.

Formulas for estimating p and q were obtained using the
method of moments (11) and are as follows:

., W= vl +w)?

v(l + w)?
q = pw
where v = sample variance
w = (l — X)X
X = sample mean.

After all parameter estimates were made, the appropriate
transformed solar radiation differences were simulated by
month and precipitation status. In the case of dry days,
gamma random variates were simulated using the same pro-
cedure as for precipitation. Each random variate was then
transformed back to the original scale by adding MINSRD,
subtracting 3. and adding the maximum clear day radiation.
In the case of wet days, beta random variates were simulated
by taking advantage of the following relationship:

I'(p.1
B = e
Fp.h) + I'(q,h
Thus, a beta random variate was obtained from a combi-
nation of two gamma random variates. Daily solar radiation
values were then computed in the original scale by reversing
the transformations previously indicated.

RESULTS AND DISCUSSION

Extensive model testing was done at Columbia,
Mo., because of the availability of a long historic rec-
ord for precipitation and temperature. Simulated data
were compared to the 17-year historic base period and
to the entire 80-year length of record. The former tests
indicate whether model assumptions are valid and the
Jatter tests show whether the base period is of suffi-
cient length to adequately represent the entire data
set.
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where 't = difference for either previous day maximum
temperature or current temperature
V' = current temperature

7. = standard normal random variate,
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ASsumes that temperature difference parameter estimates
are homopeneous within month and precipitation status.

his {3xumption is thought to be much more conservative
than the Assumption that parameter estimates based on ac-
tnal temperatyres are homogeneous within month and pre-
CIPItion statys. The latter assumption is clearly subject to
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weather changes are relatively fast.

Solar Radiation

Daily solar radiation differences were simulated from a
Bamma distribution on dry days and a beta distribution on
Wet davs. The solar radiation differences were obtained by
subtracting the observed solar radiation value from the
maxinuung ¢legr day radiation. The latter values were com-
puted trom y series of equations which depend only on the
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unpublished material with permission from J. T. Ritchie (soil
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zero values: The a and 8 parameters were again estimated
using the Greenwood and Durand method. This choice was
made because of the limitation in the maximum likelihood
estimator for a values less than 2.5, For Columbia, Mo.,
& generally ranged between 2 and 4. The formula for esti-
mating « by the Greenwood and Durand method follows.

_ (0.5000876 + 0.1648852Y — 0.0544274Y?)
Y

=33

(arithmetic mean)

where Y = log, { ————-41

geometric mean

This formula for & is appropriate for « = 1. Johnson and
Kotz [(7), Vol. |, p. 189] state that the error of this ap-
proximation does not exceed 0.0088%. The B parameter was
estimated as before.

The beta distribution was hypothesized for wet day solar
radiation differences. The standard form of the beta distri-
bution has two parameters, p and q, and requires the random
variable X to be in the interval zero to one, inclusive.

To get the solar radiation differences on the interval {0, 1],
the following transformation was made:

SRD — MINSRD
MAXSRD —~ MINSRD

where SRD = solar radiation difference
MINSRD = minimum SRD within month and
precipitation status
MAXSRD = maximum SRD within month and
precipitation status
TSRDy = transformed SRD.

Formulas for estimating p and g were obtained using the
method of moments (1 1) and are as follows:

TSRDB =

_ W= vl + wy
v(l + w)?
q = pw

a

where v = sample variance
w = (1 - R)/X

X sample mean. '

After all parameter estimates were made, the appropriate
transformed solar radiation differences were simulated by
month and precipitation status. In the case of dry days,
gamma random variates were simulated using the same pro-
cedure as for precipitation. Each random variate was then
transformed back to the original scale by adding MINSRD,
subtracting 3, and adding the maximum clear day radiation.
In the case of wet days, beta random variates were simulated
by taking advantage of the following relationship:

I'(p,i

B = 2D

I(p,h) + I'(q,})
Thus, a beta random variate was obtained from a combi-
nation of two gamma random variates, Daily solar radiation
values were then computed in the original scale by reversing

the transformations previously indicated.

RESULTS AND DISCUSSION

Extensive model testing was done at Columbia,
Mo., because of the availability of a long historic rec-
ord for precipitation and temperature. Simulated data
were compared to the 17-year historic base period and
to the entire 80-year length of record. The former tests
indicate whether model assumptions are valid and the
latter tests show whether the base period is of suffi-
cient length to adequately represent the entire data
set.



Table 1. Conparison of average historic and simulated climatic values by location and month,

Precipitation Precipitation Maximum Minimum Solar
occurrence amount temperature temperature radiation
——— ———— — T

Location Month Hist Sim Hist Sim Hist Sim Hist Sim Hist Sim

_EE_RN — NA—
T eem— - cC—— ly!day

Columbia 1 0.488 0.493 3.70 3.79 3.42 3.35 —6.82 -6.71 184.8 193.1

{17-year period) 2 0.442 0.425 4.06 4.1 6.11 6.45 —4.42 —-4.15 266. 213.6

3 0.522 0.503 6.3 6.17 1113 11.38 -0.18 ~0.01 350. 355.7

4 0.535 0.556 8.9 9.9 13.16 18.84 7.17 7.08 435. 433..

5 0.488 0.504 10.9 11.6 24.21 24.00 12.42 12,27 530. 516.5

6 0.445 0.452 10.2 10.3 28.90 28.89 17.34 17.51 571. 572.1

7 0.431 0.421 10.6 9.3 31.56 31.56 19.84 19.91 580. 582.8

8 0.349 0.343 5.9 6.8 31.04 31.11 18.71 18.81 530. 5276

9 0.386 0.375 9.6 9.8 27.11 27.03 14.25 14.39 427. 432.0

10 0.338 0.352 8.4 8.9 20.97 20.95 8.42 8.58 317. 316.3

11 0.363 0.357 3.6 3.67 12.58 12.22 1.40 0.99 2126 218.8

12 0.440 0.454 4.3 5.11 5.49 5.31 — 4,05 -3.99 162.9 164.1

Annual 0.436 0.436 86.4 89.7 18.53 18.48 7.06 7.11 380.8 382.6

Columbia 1 0.431 0.493+%+ 4.70 3.85 4.03 3.21%» —6.15 —6.82%* 184.8 191.1

(80-year period) 2 0.438 0.446 4.51 4.32 5.74 6.09 —4.68 —-4.35 266. 269.8

3 0.435 0.533%* 1.27 6.67 11.84 11.41* 0.45 0.05* 350. 353.4

4 0.505 0.551** 9.4 9.46 18.67 18.72 6.89 6.95 435. 436.3

5 0.515 0.499 11.9 115 23,94 24.15 12.19 12.35 530. 522.0

6 0.467 0.456 12.0 10.66 28.82 29.05* 17.37 17.57* 571, 573.1

7 0.382 0.407 8.9 9.61 31.55 31.77# 19.49 19.98*+* 581. 581.9

8 0.385 0.355* 9.1 6.45%% 30.89 31.16* 18.61 18.86** 528, 5277

9 0.380 0.406 11.0 10.5 26.84 27.08 14.39 14.53 431. 426.0

- 10 0.327 0.350 7.5 8.9 20.78 21.12* 8.12 8.66%* 322. 316.6

11 0.363 0.366 5.46 3.82*# 12.34 12.29 1.20 1.07 2138 2158

12 0.400 0.457** 4.65 487 5.55 5.29 —-3.99 ~4.04 162.0 162.8

i Annual 0.423 0.443%+ 96.3 90.7* 18.47 18.50 7.04 7.12 379.9 381.9

: Albuquerque 1 0.205 0.195 0.73 0.85 8.56 8.75 —4.71 —4.35 299.5 299.8

2 0.274 0.283 0.95 0.95 11.18 11.08 —-2.72 -2.73 386.5 384.1

: 3 0.263 0.284. 1.21 1.36 15.13 14.80 0.12 0.06 504.0 504.2

4 0.197 0.198 1.01 0.91 21.21 20.91 5.07 4.88 629.0 629.3

3 5 0.268 0.279 0.97 1.05 26.75 26.58 10.27 10.21 696.4 691.8

< 6 0.280 0.286 1.35 1.22 32.21 32.37 15.48 15.48 738.2 732.9

ki 0.576 0.604 3.61 3.82 33.57 33.67 18.56 18.58 681.0 677.2

8 0.561 0.523 3.6 3.29 32.02 32.20 17.56 17.66 628.5 628.0

2 9 0.310 0.313 1.87 1.91 28.70 28.58 13.64 13.57 549.9 551.8

G 10 0.219 0.241 2.1 2.65 22.08 22.06 6.90 7.01 442.0 437.4

} 11 0.200 0.201 0.82 0.77 13.74 13.73 -0.07 0.01 326.2 326.1

12 0.218 0.210 1.33 1.25 841 8.44 -4.17 —4.19 275.4 274.1

Annual 0.298 0.302 19.6 20.1 21.17 21.14 6.37 6.39 512.3 511.8

; Caribou 1 0.747 0.709 5.43 5.12 ~6.47 -7.15* ~16.40 —16.84 143.7 147.3

: 2 0.706 0.687 5.61 5.82 —-4.62 —4.97 ~-15.77 -16.27 . 244, 243.1

3 0.616 0.596 5.5 5.79 0.61 0.50 -9.49 -9.89 359. 364.7

: 4 0.588 0.589 6.4 6.53 7.72 7.95 -1.90 ~178 ! 419. 433.3

o 5 0.603 0.575 7.0 7.03 15.47 15.89 3.88 3.99 463. 474..

“ . 6 0.602 0.609 7.9 8.13 21.40 20.94 9.49 9.27 500. 495.

) 7 0.622 0.630 10.0 10.3 24.07 23.92 12.31 12.20 505. 500.4

e 8 0.572 0.585 10.0 11.2 22.47 22.13 10.70 10.51 435. 436.6

9 0.557 0.561 9.2 9.7 17.98 17.82 6.40 6.31 325. 325.4

10 0.556 0.562 8.3 8.1 11.30 11.53 1.63 1.78 203.6 210.6

% 11 0.718 0.733 8.7 9.35 3.59 3.66 ~-3.94 -3.89 113.0 118.3

S 12 0.772 0.771 7.1 6.97 —4.29 - —445 -12.98 -13.06 109.1 1112

x Annual 0.638 0.634 91.2 94.0 9.17 9.04 -1.27 —-1.41 321.3 322.0

: Medford 1 0.732 0.744 9.8 10.5 7.16 6.94 -0.79 -0.79 1183 122.1

2 0.563 0.573 5.7 5.95 11.563 11.26 -0.13 ~0.16 © 2164 219.9

3 0.552 0.530 4.3 415 14.10 14.42 0.83 0.72 349. 351.2

4 0.440 0.435 2.33 2.29 18.10 17.57* 2.89 282 484, 478.9

5 0.400 0.377 3.3 3.17 22,42 23.25%* 6.16 6.29 594. 593.1

6 0.272 0.262 L77 1.72 27.12 27.06 9.76 9.66 648. 652.0

-7 0.098 0.098 0.70 0.57 32.51 32.47 12.32 12.23 696.6 698.8

8 0.137 0.169 0.93 113 31.52 31.04* 11.87 11.82 600.7 595.0

9 0.183 0.205 1.54 1.94 28.28 27.96 8.60 8.64 463.2 459.9

10 0.374 0.374 4.5 4.55 20.35 20.27 4.28 4.18 294.3 295.1

11 0.593 0.609 7.6 8.05 1L.79 12.00 1.38 1.46 148.4 1464

12 0.713 0.715 9.9 9.8 6.95 6.80 -0.38 -0.38 96.3 96.4

Annual 0.421 0.424 52.3 53.8 19.36 19.29 4.76 4.73 391.1 393.2

Miamij 1 0.395 0.404 5.8 6.0 23.81 23.68 14.65 14.64 332.1 333.1

2 0.382 0.397 5.6 5.92 24.56 24.67 15.36 15.46 410.1 409.8

3 0.340 0.355 5.2 5.1 26.18 26.18 17.35 17.32 480. 485.0

4 0.358 0.339 6.7 7.2 28.06 28.06 19.90 19.85 547. 551.3

5 0.500 0.513 16.5 18.3 29.54 29.31** 21.85 21.86 548, 541.2

6 0.682 0.673 25.0 25.3 30.85 30.73 23.41 23.67* 515. 513.6

ki 0.694 0.688 15.8 16.6 31.65 31.64 24.37 24.40 546.. 548.6

8 0.713 0.721 16.8 17.6 32.19 32.02** 24.53 24.51 516. 509.0

9 0.750 0.739 21.9 23.3 31.18 31.18 24.09 24.07 443. 438.4

10 0.634 0.660 21.3 22.0 29.10 29.12 21.79 21.87 393.1 387.8

11 0.443 0.420 6.7 7.8 26.51 26.47 18.16 18.18 353.7 352.5

12 0.350 0.340 4.3 4.60 24.42 24.17 15.37 15.03 323.4 322.2

—_— Annual 0.521 0.521 152. 159.8 28.19 28.12 20.09 20.08 452.8 449.5

s Significant at the 0.05 and 0.01 levels, respectively.
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Model validation w1 Columbia consisted of several
types of tests. T-tests Wwere used to compare the
means, and F-tests were ysed to compare the varj-
ances of mean daily precipitation, maximum temper-
ature, minimum temperature, and solar radiation for
cach month and precipitation status (wet or dry). The
ranges of these weather variables were also examined,
Chi-square tests were uscd to compare the frequency
of wet days for each month. Two-sample Kolmogorov-
Smirnov (K-S) tests were used to Compare cumulatjve
distribution functions (CDF’s) by month and precip-
itation status. The means, standard deviations, and
ranges of wei spells, dry spells, freezing spells, and
hot spells (35 C or above) were computed for each
month for the 80 years of historic data and 99 years
of simulated datg. Finally, the frequency distributions
of the wet, dry, freezing, and hot spells as well as the
CDF’s which ‘were declared significantly different by
the K-S tests were graphed for the historic and sim-
ulated data.

Table 1 shows g comparison between the historic
and simulated data at each location for frequency of
wet days, mean total precipitation, maximum and

the authors (10).

The validation showed that the method used to sim-
ulate precipitation occurrence worked very well for
the base period at all locations. No significant differ-
ences were found (o = 0.05). At Columbia where 80

majority of the variances were significantly different
at four of the five locations (@ = 0.05). The annual
totals showed a slight positive bias and the associated
variances a slight negative bias. Comparison of the
simulated data to the entire 80-year period of record
at Columbia revealed a negative bias in the average
monthly rainfa]l amounts and variances. The simu-
lated total annual rainfall was significantly lower than
the historic.

The algorithm used to generate daily maximum and
minimum temperatures worked very well. Few sig-
nificant differences were found in the means, vari-
ances, and distributions (@ = 0.05). Compuarisons to
the base period showed a tendency for the monthly

year period at Columbia although there was some in-
dication that the 17-year base was slightly warmer.,

o TS T e

The method useq to simulate solar radiation worked
extremely well. Very fey significant differences were
found in the means and distributjong (e = 0.05). Vari-
ances were significantly different less than 25% of the
time (o = 0.05). No biases were evident in any of the
comparisons. There wag not a long enough period of
record available at Columbia to determine whether
the 17-year base period was of sufficient length.

Overall, the validation showed that the simulated
values for ajl climatic variableg were very similar to
the actual data used for parameter estimation at gl

would cause the simulated data to have unrealistically
low variance. The choice of the length of the base
period depends in part on the purpose of the simulation.
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